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Abstract
Herein we study energy exchange models of multiple interacting agents that
conserve energy in each interaction. The models differ regarding the rules
that regulate the energy exchange and boundary effects. We find a variety of
stochastic behaviours that manifest energy equilibrium probability distributions
of different types and interaction rules that yield not only the exponential
distributions such as the familiar Maxwell–Boltzmann–Gibbs distribution of an
elastically colliding ideal particle gas, but also uniform distributions, truncated
exponential distributions, Gaussian distributions, Gamma distributions, inverse
power law distributions, mixed exponential and inverse power law distributions,
and evolving distributions. This wide variety of distributions should be of value
in determining the underlying mechanisms generating the statistical properties
of complex phenomena including those to be found in complex chemical
reactions.

1. Introduction

One purpose of statistical mechanics [1] is to derive the constitutive equations of
thermodynamics from the underlying microscopic equations of motion for the individual
particles in a liquid, solid or gas. To accomplish this ambitious purpose an intermediate
description of the physical system involving probability distributions was introduced. In the
19th century such distributions were considered to be merely convenient devices for keeping
track of the many particle behaviour in complex phenomena. However, these distributions
have come to take on a reality of their own, often capturing the essential features of complex
phenomena.

A typical example of this new reality is the statistical distribution of particles in an ideal
gas [1]. These particles collide elastically, and because it is not possible to realistically describe
the entire system by following the individual particle trajectories, one instead focuses on
the statistical properties of a large collection of such trajectories. The ensemble distribution
function then takes on a life of its own and determines how the physical variable being
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considered changes over time or over the members of the ensemble. In the ideal gas, for
example, the distribution function keeps track of how kinetic energy is distributed among the
constituents of the gas. In the elastic collisions of an ideal gas the total kinetic energy of
the colliding bodies after collision is equal to their total kinetic energy before collision. This
equality is possible only if there is no conversion of kinetic energy into other forms. However,
the conservation of kinetic energy is indeed a particular case of the more general conservation of
energy principle that states that the total amount of energy in a closed system remains constant.

In physics the form of the probability distribution function encapsulates the various
conservation laws which constrain the system’s dynamics. This strategy has proven so
successful in describing equilibrium and near-equilibrium phenomena in the physical sciences
that many of the ideas have been transplanted from statistical mechanics into the social sciences.
Consequently, to broaden the interpretive context of our discussion we shall replace the physical
notion of a ‘particle’ with the more generic term ‘agent’, and although we shall continue to use
the term ‘energy’ its meaning is that of anything two agents might exchange according to an
interaction constrained by a conservation law.

One such application that will be in the background of much of what is discussed herein
is econophysics [2–6]. Econophysics can be considered a branch of the mathematical theory
of complexity, and is closely linked to information theory, theories which were developed by
physicists such as Shannon [7] and Gell-Mann [8], respectively. The rationale behind this
philosophy is that physical models reflect economic phenomena because such phenomena are
indeed the macroscopic result of the interactions of many agents on a microcosmic level; thus
they are a particular kind of physical phenomena. Currently there are several fields and tools
from physics that are being used in econophysics such as fluid dynamics, quantum mechanics,
and the path integral formulation of statistical mechanics.

The term ‘econophysics’ was coined by Stanley [4] in the mid 1990s, to describe the
large number of papers written by physicists on the problems of (stock) markets [9], and
first appeared in a conference on statistical physics in Calcutta in 1995 and its following
publications. However, if for ‘econophysics’ we decide to denote a general application of
physics concepts and methodologies to economics, we can consider the works of Léon Walras
(1834–1910) [10] and Vilfredo Pareto (1848–1923) [11, 12] to be the initiators of the field.

As historians in the science of economics [13] acknowledge, Elements of Pure
Economics [10] led to Walras being considered the father of the general equilibrium theory
of economics. Vilfredo Pareto (an Italian physicist, sociologist, economist and philosopher)
further developed general equilibrium theory models for economics which were borrowed from
physics and mechanical equilibrium. In particular, Pareto made several important contributions
to the study of income distributions and to the analysis of individuals’ choices. He introduced
the concept of Pareto efficiency and helped develop the field of microeconomics. Particularly
famous is the so-called Pareto’s law concerning the distribution of income, a law that states
that the income distribution, P(w), for the upper-class in societies presents an inverse power
law tail of the type

P(w) ≈ 1

wμ
, (1)

where μ is known as the Pareto index and w is the income level. Pareto found that for all
societies he analysed the index μ has the value domain 1 < μ < 2.

In the following sections, we study closed systems of interacting agents that are elastically
exchanging energy, in the generic sense defined above. Energy is interpreted to be anything that
can be exchanged and is conserved during the interaction: for example, total kinetic energy, the
total mechanic energy, the mass, or even, as in the case of economic trading agents, money [14].
The only constraint in each interaction is that the amount of energy possessed by each agent is
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Figure 1. Elastic collision between two particles in which the total energy is conserved. The
interaction causes only a transfer of an amount of energy �εi j from one particle to the other.

non-negative (in analogy to the kinetic energy of a particle) because we assume this ‘energy’
to be something physical that can be exchanged between two agents and, naturally, an agent
cannot give away what it does not possesses. Note that we avoid the notion of credit in this
analysis.

We will show that the common belief that random elastic collisions of a large number of
ideal particles in an ideal gas can only yield the Maxwell–Boltzmann–Gibbs distribution [1]
is not correct. In fact, the exponential Maxwell–Boltzmann–Gibbs distribution of colliding
particles is based on the specific dynamical–statistical rules regulating the energy exchange
during the collisions. However, through the various choices of energy exchange mechanisms
determined by alternative properties and constraints we distinguish among a variety of complex
systems characterized by different probability distribution functions of energy. Thus, we show
that by changing these rules and also including some boundary effects, a variety of stochastic
behaviours occur, manifesting energy conserving equilibrium probability distributions of
different types.

2. Energy exchange models

Our basic hypothesis is that all the energy contained in the initial state goes into the final state,
which is to say there is no dissipation and the system is conservative. This means that if the
initial energies of two particles are εi and ε j , respectively, and after the collision the energies
are ε′

i and ε′
j respectively, the following relation of conservation of energy is fulfilled:

εi + ε j = ε′
i + ε′

j , (2)

where, if we call �εi j the amount of energy that transfers from the agent i to the agent j , we
have

ε′
i = εi + �εi j (3)

ε′
j = ε j − �εi j . (4)

This simple idea is graphically represented in figure 1 and is presented at the risk of being
pedantic in order to be clear about the changes in interaction being made in subsequent sections.

Note that the amount of exchanged energy �εi j can be positive (if agent i gains energy)
or negative (if agent i loses energy). However, because we suppose that the energy of a single
agent must always be non-negative, we assume that in each collision the amount of energy that
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can be lost by an agent |�εi j | cannot exceed the amount of the initial energy of the same agent.
Thus, a collision between the agents i and j is characterized by the constraint

|�εi j | � εi , if ε′
i < εi , or (5)

|�εi j | � ε j , if ε′
j < ε j . (6)

The logical implication is that in a collision–interaction the extreme scenario would be that the
final state is characterized by a situation in which one agent loses all its energy in favour of the
other of the type:

ε′
i = 0 and ε′

j = εi + ε j , or (7)

ε′
i = εi + ε j and ε′

j = 0. (8)

Finally, the above roles regulating the interaction between two agents imply that given a large
set of N colliding agents indicated by the index i = 1, 2, . . . , N , the total energy of the set is
conserved in time, that is:

E =
N∑

i=1

εi =
N∑

i=1

ε′
i = const > 0. (9)

Given the above general energy transfer role, the question we elect to answer is the
following: given a set of elastically scattering agents, what is the system’s equilibrium
probability distribution of energy, Peq(ε)?

That is, if we assume, for example, that at the initial time t = 0 the energy is equally
distributed among the N agents, εi(t = 0) = E/N for i = 1, 2, . . . , N , what is the form of
Peq(ε) after a large number of collisions have occurred?

It is evident that such an equilibrium distribution will depend on the particular rule
regulating the amount and the direction of energy exchange �εi j that is transferred from agent
i to agent j in each collision. For example, it is evident that if for each collision we assume
that there is always a null transfer of energy, �εi j = 0, the equilibrium distribution would be
equal to the initial distribution whatever it is, Peq(ε) = Pt=0(ε), because in this case ε′

i = εi

for all i = 1, 2, . . . , N .
It should be stressed that for the equilibrium probability distribution of energy, Peq(ε),

we intend the most probable way of distributing the agents among various allowed energy
states subject to the common constraints of a fixed number of agents, fixed total energy,
and the additional particular constraints regulating the energy exchange mechanism itself. It
is important to emphasize this maximal likelihood principle because it is always possible
to realize that stochastic systems, which we study, might occasionally assume any possible
configuration. For example, it is possible to argue that given a gas of colliding particles in
a room if we wait a sufficiently long time it is possible to obtain a situation in which all the
particles have equal energy, or all available energy is transferred to a single particle and all the
other particles fall on the ground, or again that all the particles might occupy the left side of
the room leaving the right side of the room completely empty. Of course, these situations are
conceptually possible and statistically they could occur, but the probability of their realization
is extremely small, and thus these unlikely situations will not be part of an equilibrium state of
the system.

In subsequent sections we study different physical scenarios by simply modifying the role
regulating the amount and direction of energy �εi j that transfers from the agent i to the agent
j in each collision. We proceed with analytical demonstrations and/or numerical computer
simulations.
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Figure 2. Unconstrained random energy exchange models. The equilibrium distribution is an
exponential function of the type of equation (13), Peq(ε) = β e−βε . We have used N = 10 000
particles with energy εi (t = 0) = E/N = 1/β and Peq(ε) is evaluated after 100 000 000 random
collisions. We have used three different initial average energy values per particle: εi (t = 0) = 2;
εi (t = 0) = 1; εi (t = 0) = 0.5. Note that the larger the energy, the wider the equilibrium
distribution.

3. The simplest random energy exchange models and the Maxwell–Boltzmann
distribution

The most familiar and simplest kind of elastic scattering is the one characterized by pure
unconstrained random exchange of energy among a set of agents such as the exchange of kinetic
energy among the particles of an ideal gas [1]. For pure unconstrained random exchange of
energy we intend that in each interaction between two agents the total available energy εi + ε j

mixes and then randomly splits between the two agents with an equal probability for both
agents to increase or lose energy. Formally this definition of elasticity means that the energy
separates as

ε′
i = εi + �εi j (10)

ε′
j = ε j − �εi j (11)

�εi j = ξ(εi + ε j) − εi , (12)

where 0 � ξ � 1 is a random number with uniform distribution that changes at each
interaction. As is well know, this elastic scattering property yields the well-known Maxwell–
Boltzmann distribution of energy, where the equilibrium distribution is given by an exponential
function of the type

Peq(ε) ∝ e−βε, (13)

where β is an opportune constant that depends on the total energy E of the system.
In figure 2 we show a few equilibrium distributions Peq(ε) for three computer experiments

of unconstrained random elastic scattering obtained by assuming a set of N agents having at
the beginning the same energy and letting them randomly interact for a sufficient amount of
time such that the distribution of energy reaches an almost invariant form that is interpreted as
representative of the most probable configuration of the system, the equilibrium form of the
system. Note that the exponential-function form of the equilibrium distribution, a form that
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is strongly asymmetric with a fast decay for large ε, can be expected because by adopting the
above mechanism the collision does not have any memory of the past energy of the agents. Very
energetic agents are severely disadvantaged by this mechanism because they always have a high
probability of losing a significant amount of energy in any collision. Thus, the probability of
finding energetic agents is expected to decay very quickly, according to a distribution having
an exponential tail.

The simulations in this study will always be carried out according to the above
computational dynamical perspective. So, we deduce the equilibrium probability distribution
of energy by simply letting N agents exchange energy for a sufficient amount of time according
to equations (10) and (11) and to an additional specific condition describing the property of the
exchange interaction such as the one expressed by equation (12). In this way our simulation
actually simulates the natural process under study.

However, in this particular case, which is the simplest meaningful one that can be thought
of, we observe that this energy exchange process can be easily proven to be characterized by the
probability distribution function in equation (13) by means of a simple statistical argument. In
general, a statistical computation would be much more difficult if an exchanging rule different
from equation (12) were adopted.

In fact, we observe that the above process expressed by equations (10)–(12) is equivalent to
a scenario where the N agents are arranged in a set of r distinguishable sub-states or microstates
characterized by a given energy εz and each contains a given number of particles nz with
z = 1, 2, . . . , r . No additional condition is required because the exchange rule expressed
by equation (12) implies that the process is regulated only by the two basic system constraints
we suppose for these models:

N =
r∑

z=1

nz = const (14)

E =
r∑

z=1

nzεz = const. (15)

Thus, the most probable energy configuration can be easily estimated with simple statistical
calculation. In fact, the number of possible random arrangements may be computed from the
relation

W = N !
n1!n2! · · · nr ! . (16)

The equilibrium distribution Peq(ε) is the one that maximizes the number of arrangements W
because this configuration is the most probable. To calculate Peq(ε) first we use the Stirling
approximation formula for factorials, and obtain

log(W ) = N log(N) − N −
r∑

z=1

nz log(nz) +
r∑

z=1

nr . (17)

Then, log(W ) can be maximized by considering the above two system constraints using the
Lagrange multipliers α and β and imposing that the variation in the logarithm of the number of
microstates is an extremum, that is:

d log(W ) − α

r∑

z=1

dnz − β

r∑

z=1

εzdnr = 0. (18)

By using (17) we obtain d log(W ) = − ∑r
z=1 log(nz) dnz , and equation (18) becomes

r∑

z=1

(− log(nz) − α − βεz) dnz = 0. (19)
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Thus, the number of particles in the state z in terms of the energy of the state and two Lagrange
multipliers is given by

nz = e−α e−βεz . (20)

The constant α can be easily calculated by using the restriction
∑r

z=1 nz = N , to obtain

nz = N
e−βεz

∑r
z=1 e−βεz

. (21)

Thus, the equilibrium probability Peq(ε) has an exponential form of the kind

Peq(ε) = nε

N
∝ e−βε. (22)

In the particular case of thermodynamic equilibrium system such as a gas of scattering particles
it is well known that β = 1/kT , with k being the Boltzmann constant and T being the
temperature of the system [1]. The quantity kT is a measure of the average energy per particle
E/N of the system.

4. Anomalous random energy exchange models

In the following subsections we discuss different elastic models characterized by an anomalous
random energy exchange mechanism. We show that when the collisions are regulated by
anomalous rules that constrain the energy exchange and introduce boundary effects, they
produce a kind of long-term memory effect on the agents. For example, in the simple
unconstrained model studied in the previous section an agent loses any memory of its past at
each collision. Instead, in the following cases it will not be so because the additional exchange
constraints force the agents to retain memory of their past condition. This memory generates
a stress inside the system that has the result of shaping the energy equilibrium probability
distributions in a variety of forms different from the Maxwell–Boltzmann distribution, such
as uniform distributions, truncated exponential distributions, Gaussian distributions, Gamma
distributions, inverse power law distributions, mixed exponential and inverse power law
distributions, and evolving distributions.

4.1. Models with energy saving: fixed percentage

A simple variation of the unconstrained random elastic scattering model is one in which the
agents before interacting save a fraction of their energy [15]. This means that not the entire
amount of their energy but only a fraction λ of it is available for exchange. Thus, in each
interaction between two agents the energy λ(εi + ε j) mixes and then randomly splits between
the two agents with an equal probability for both agents to increase or lose energy according to
the equations

ε′
i = εi + �εi j (23)

ε′
j = ε j − �εi j (24)

�εi j = (1 − λ)[ξ(εi + ε j) − εi ], (25)

where 0 � ξ � 1 is a random number with uniform distribution that changes at each interaction
and 0 � λ � 1 is a fixed saving fraction value. Of course, for λ = 0 this case reduces to an
unconstrained random elastic scattering model discussed in the previous subsection. Again, the
amount of energy available is randomly split between the two agents.

Figure 3 shows the equilibrium distribution Peq(ε) for a few computer experiments for four
values of the parameter λ between zero and one. For a vanishing value of the parameter λ = 0,

7



J. Phys.: Condens. Matter 19 (2007) 065138 N Scafetta and B J West

Figure 3. Models with energy saving: fixed percentage. The equilibrium distribution has a form that
evolves from an exponential distribution for λ = 0 to a form that resembles a Gaussian distribution
for λ approaching to 1. Observe that the for λ → 1 the maximum of the distribution approaches
the value ε = 1 which in these simulations represents the average energy values per particle. We
have averaged ten different realization by using for each of them N = 10 000 particles with energy
εi (t = 0) = E/N = 1 and Peq(ε) is evaluated after 100 000 000 random collisions.

Peq(ε) converges to an exponential-like distribution, as expected. For a non-vanishing value of
λ the equilibrium distribution Peq(ε) assumes a not-well-determined asymmetric-function form
that converges to a Gaussian-like distribution for λ approaching the value 1.

The reason for this convergence to a Gaussian-like distribution can be explained by
observing that for λ → 1 the amount of energy that a particle can receive or lose in each
collision is almost always a very small fraction of the energy available in each collision. These
kinds of interaction conserve a strong memory of the past energy of the agents because the
collisions will not drastically modify the energy of the interacting agents. This makes the
process symmetric and the temporal evolution of the energy of each agent resemble a kind
of random walk. Thus, using the central limit theorem the distribution will be a symmetric
Gaussian distribution centred on the average energy value.

4.2. Models with energy saving: individual random percentage

The scattering with an individual random percentage energy saving model [15] assumes that
the energy saving percentage depends on the agent. In each interaction some agents will have
little propensity for saving energy while others will save most of their energy.

Herein, we generalize the model originally presented in [15] and assume that the agent
i saves the percentage 0 � λα

i � 1 of its own energy before each interaction. The saving
percentage for each agent does not change in time and the set of {λi } is uniformly distributed in
the interval [0 : 1]. The exponent α > 0 (which in [15] is α = 1) is supposed to be constant for
all agents during all process and it is used to vary the distribution of percentage saving values
{λα

i }: for α = 1 saving percentage values are uniformly distributed; for 0 < α < 1 most agents
will save energy in each interaction; for α > 1 most agents will share a large amount of their
energy in each interaction.
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Figure 4. Models with energy saving: individual random percentage. These equilibrium
distributions show inverse power law tails of the type Peq(ε) ∝ ε−β with β ≈ 2. For α < 1
there appears a two class separation among agents with a small class characterized with high energy
value, which follows an inverse power law tail distribution, and a class containing all other agents
with a medium–low energy value, which follows a more exponential-like distribution. The value
ε = 1 represents the average energy value per particle. We have used N = 100 000 agents with
energy εi (t = 0) = 1 and Peq(ε) is evaluated after 100 000 000 random collisions. (In the figure
the curves are vertically shifted for better comparison.)

In each interaction, again we suppose that the amount of energy available is randomly split
between the two agents. Thus, with λα

i and λα
j the saving percentage of the two agents, the

equations describing the interaction are

ε′
i = εi + �εi j (26)

ε′
j = ε j − �εi j (27)

�εi j = (ξ − 1)(1 − λα
i )εi + ξ(1 − λα

j )ε j , (28)

where 0 � ξ � 1 is a random number with uniform distribution that changes at each interaction
and 0 � λi � 1 for i = 1, 2, . . . , N are a set of random values uniformly distributed in [0 : 1]
that remain fixed for each agent.

Figure 4 shows three computer simulations with α = 0.01, α = 1 and α = 100. These
equilibrium distributions show inverse power law tails of the type Peq(ε) ∝ ε−β with β ≈ 2.
For α = 0.01 it is evident that the agents divide in two classes: a small class characterized with
high energy value, which follows an inverse power law tail distribution, and a class containing
all other agents with a medium–low energy value, which follows a more exponential-like
distribution.

The rationale for getting wide distributions with slowly decaying tails rests on the fact that
with an individual random percentage energy saving mechanism a certain number of agents
will save most of their own energy while others will share most of it in each interaction. Thus,
the agents that share a small percentage of their energy will likely absorb a large amount of
energy from the less energetic agents with which they interact.

For α → 0 the great majority of agents will share almost all of their own energy in each
interaction, as in the case of unconstrained random elastic scattering discussed above. Because
the latter mechanism will be adopted by the majority of agents, and the cases when these agents
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interact with one of the few very energetic agent are rare, the equilibrium distribution Peq(ε)

for medium–low energy will resemble the exponential form of the Maxwell–Boltzmann–Gibbs
distribution.

For α � 1 instead, most of the agents will save a large amount of their own energy at each
interaction. Thus, the simulation shows an equilibrium distribution Peq(ε) that a medium–low
energy will resemble a Gaussian distribution, as we have seen above to happen for a scattering
with a high fixed percentage energy saving model, but there will still be a small but significant
number of agents which collect a large amount of energy. These few agents are responsible for
the inverse power law tail of the equilibrium distribution.

Note that in this model the power law tail of the equilibrium distribution is indeed
produced by that small number of objects which are characterized by a saving percentage value
approaching the value of 1. By repeating the simulation with λα

i distributed in the interval
[0 : 0.9], the power law vanishes and the equilibrium distribution looks like those obtained
with a scattering with a fixed percentage energy saving discussed in the previous subsection
with a function form that resembles a gamma distribution for α = 1. If the saving percentage
coefficients are not constant for each agent but randomly change in time the inverse power law
tail again vanishes.

4.3. Models with fixed amount of energy exchange

In the previous models we have hypothesized that the amount of energy �εi j that transfers from
one agent to the other might be a fraction of the sum of the energy of both interacting agents.
Herein, we assume models in which in each interaction only a fixed small amount of energy η

can transfer from one agent to another, with the only constraint being that the energy of each
agent remains non-negative (see also [16, 17]). Without losing generality we can assume that
the energy of each agent is an integer multiple k � 1 of η: εk = kη.

The first model assumes that the energy transfer in each interaction might favour either of
the two agents, so the direction of the energy exchange is independent of the relative energy of
the two agents. Thus, this mechanism is described by the following equations:

ε′
i = εi + �εi j (29)

ε′
j = ε j − �εi j (30)

�εi j = η, (31)

where η is a fixed small amount of energy. However, because the energy of an agent must be
non-negative we impose the boundary condition that in an interaction an agent with ε = 0 can
only absorb an amount η of energy from another agent with ε � η, or not exchange any energy
at all.

Figure 5 shows how the probability distribution P(ε, t) of this model evolves in time.
We suppose 100 000 agents that randomly interact by randomly exchanging a fixed amount
of energy equal to η = 0.05 and that each agent has an initial energy of ε = 1. We plot
P(ε, t) after one million interactions, after ten million interactions and one hundred million
interactions.

The figure shows that the distribution function has an interesting transformation when a
certain number of agents hit the boundary at ε = 0. Before that the boundary at ε = 0 is met
by the agents, the distribution is essentially Gaussian, or better a binomial distribution centred
in ε = 1 because the agents’ energy undergo to a diffusive-like process equivalent to a random
walk process with constant random jumps of length η. Thus, the probability distribution evolves

10
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Figure 5. Models with fixed amount of energy exchange and a boundary condition at ε = 0. The
probability distribution evolves from a Gaussian distribution (before contact with the boundary at
ε = 0) to an exponential distribution of the type Peq(ε) = e−ε at equilibrium. The figure shows two
realizations using N = 100 000 agents with energy εi (t = 0) = 1, and Peq(ε) is evaluated after
1000 000, 10 000 000 and 100 000 000 random collisions, respectively.

in time approximately as

P(ε, t) = 1√
2πηt

exp

[
− (ε − 1)2

2(ηt)2

]
. (32)

Once the boundary is encountered, a certain number of agents will condense on it and the
symmetry of the process is broken because one half of the interactions these agents with energy
ε = 0 have with the other agents will not have any effect. After a period of transition the energy
distribution converges to an equilibrium distribution that decays exponentially:

Peq(ε) = e−ε. (33)

The above model assumes that the system has a single lower boundary at ε = 0, while
the high boundary is left open. However, it is possible to imagine a system with two finite
boundary conditions such that the energy of any agent is within the limit

0 � ε � β, (34)

where β indicates the upper boundary limit. Thus, as for the lower limit, if an agent has energy
ε = β in an interaction with a less energetic agent it can release an amount η of energy or will
not exchange anything.

Figure 6 shows the equilibrium distribution Peq(ε) for a few computer simulations using
the same lower boundary at ε = 0 and four different upper boundaries: β = 2; β = 2.5; β = 3
and β = 4. All simulations have been carried out assuming that all agents have initial energy
ε(t = 0) = 1.

Figure 6 shows that the equilibrium distribution Peq(ε) for β = 2 is a uniform distribution:
Peq(ε) = 0.5. This can be explained by observing that the system is perfectly symmetric
because the average energy for each agent is ε = 1. For β > 2 the equilibrium distribution
Peq(ε) assumes an exponential form of the type

Peq(ε) = g(β)

1 − e−g(β)β
e−g(β)ε, (35)

11
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Figure 6. Models with fixed amounts of energy exchange and two boundary conditions: one at
ε = 0 and the other ε = β > 2. The equilibrium distribution has a truncated exponential-function
form of the type Peq(ε) ∝ e−g(β)ε , with g(β = 2) = 0 and limβ→∞ g(β) = 1. The figure shows
two realizations using N = 100 000 agents with energy εi (t = 0) = 1, and Peq(ε) is evaluated
after 300 000 000 random collisions, respectively.

where the function g(β) is monotonically increasing in β and satisfies the limit conditions

g(2) = 0 and lim
β→∞

g(β) = 1. (36)

The case 1 < β < 2 can be easily obtained by using the symmetric properties of the system,
and the equilibrium distribution Peq(ε) assumes an exponential form of the type

Peq(ε) = g(β)

eg(β)β − 1
eg(β)ε, (37)

with the same function g(β).
Two additional elementary models would constrain the direction of the energy transfer:

(a) the energy can transfer only from a less energetic agent to a more energetic agent; (b) the
energy can transfer only from a more energetic agent to a less energetic agent. If one thinks
in terms of the transfer of wealth during a trade rather than the transfer of energy during a
collision, certain social implications suggest themselves.

In the former case evidently at equilibrium all energy is condensed into a single agent
while all other agents have zero energy. Thus, the distribution will converge in time to a Dirac
delta centred in zero, Peq(ε) → 2δ(ε), (the ‘2’ is because the distribution is defined for ε � 0).
In the latter case evidently at equilibrium all agents have the same energy. Certain economic
theories also conclude that all wealth will wind up in the hands of the very few, leaving the rest
of humanity to starve.

4.4. Models with energy exchange bounded to the less energetic of the two agents

In the previous models we have hypothesized that the amount of energy �εi j that transfers from
one agent to the other is related to the energy of both interacting agents. Herein we analyse a
set of energy exchange models in which �εi j is related only to energy of one of the two agents
(see also [18, 19]). Because the energy of the agents has to be always non-negative, the simplest

12



J. Phys.: Condens. Matter 19 (2007) 065138 N Scafetta and B J West

Figure 7. Models with energy exchange bounded to the less energetic of the two agents. The
equilibrium distribution is not stable and in time all energy is absorbed by a single agent. The
distribution approaches an inverse power law function of the type Peq(ε) = 1/ε. The figure shows
two realizations using N = 100 000 agents with energy εi (t = 0) = 1, and Peq(ε) is evaluated
after 1000 000 and 10 000 000 random collisions, respectively.

of these models must be of the type

ε′
i = εi + �εi j (38)

ε′
j = ε j − �εi j (39)

�εi j = (2ξ − 1) min[εi, ε j ], (40)

where 0 � ξ � 1 is a random number with uniform distribution that changes at each
interaction.

The above relation implies that in each interaction the less energetic trader might at most
lose or gain an amount of energy equal to its own energy. It is evident that in such an interaction
although both agents have the same probability of losing or gaining energy, the less energetic
agent always runs a higher risk because the latter might lose a fraction of its energy while the
former, if it loses energy, will always lose a smaller fraction of its own energy. Moreover, if in
an interaction a less energetic agent loses an amount of its own energy, it will be less likely that
this agent will gain an equal amount of energy in the following interaction. In fact, the decrease
of its energy in the first interaction has also decreased the potential amount of energy that can
be exchanged in subsequent interactions.

This mechanism, which is essentially equivalent to the gambler’s ruin problem [20], does
not lead to a stable equilibrium distribution of energy because this distribution becomes wider
and wider in time. In fact, the most energetic agent continues to absorb energy from all the
other agents and its energy approaches the total energy of the system while all other agents
continue to lose energy and their energy approaches zero. However, this evolving distribution
approaches an inverse power law distribution of the type

Peq(ε) = 1

ε
, (41)

as figure 7 shows.
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In fact, the above process is almost equivalent to a multiplicative stochastic process where
the energy of an agent evolves as

dεi

dt
= φ(t)εi , (42)

where −1 < φ(t) < 1 is a random number that is delta correlated in time. The above equation
yields the Fokker–Planck equation for the evolution of the probability density of energy

∂ P

∂ t
= ∂

∂ε

[
ε
∂(εP)

∂ε

]
, (43)

which has equation (41) as the solution at equilibrium: ∂
∂ t P = 0.

Note that the above is only an approximation of the energy exchange model herein analysed
because the multiplicative stochastic process described in equation (42) does not conserve
the total energy of the system. However, without losing generality it can be hypothesized
to periodically normalize the energy of the total system to force it to have a constant value.

4.5. Energy exchange oriented and bounded to the less energetic of the two agents: one
parameter models

In the above models we always assume that the two interacting agents have the same chance
of gaining or losing energy. We simply changed the rules about the amount of energy εi j that
could transfer from one agent to another. However, there is another set of models in which
one of the two agents is favoured to gain energy in an interaction. This happens when the
probability that an agent i will gain net energy is, for example, dependent on some function of
the energies εi and εi (see also [18, 19, 21]).

Two possible models are possible: the efficiency of gain energy increases or decreases with
the energy. In the former case, the agent with higher energy will more likely absorb energy from
an less energetic agent. In the latter case, the agent with lower energy will more likely absorb
energy from a more energetic agent.

In the former case all energy tends to be absorbed by a single agent that becomes more
and more energetic. The latter case, instead, yields an interesting equilibrium distribution in
cases when, in the absence of such a statistical bias that favours the less energetic of the two
interacting agents, the mechanism favours only one agent.

For example, let us adopt the multiplicative stochastic process studied in the previous
subsection corrected with a simple mechanism that the less energetic of the two interacting
agents, which we refer to as agent i , is more likely to absorb energy according to a probability
bias function

Pβ(i, j) > 0.5 if εi < ε j . (44)

Thus, in a simple model the equations describing the energy transfer interaction are

ε′
i = εi + σ�εi j (45)

ε′
j = ε j − σ�εi j (46)

�εi j = ξ min[εi , ε j ], (47)

where 0 � ξ � 1 is a random number with uniform distribution that changes at each
interaction, with a probability bias function that, for example, might resemble a Planck
distribution of the type

Pβ(σ = 1) = 1

1 + exp(−β[ ε j

εi
− 1]) � 0.5, with εi � ε j , (48)

Pβ(σ = −1) = 1 − 1

1 + exp(−β[ ε j

εi
− 1]) � 0.5, with εi � ε j , (49)
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Figure 8. Energy exchange oriented and bounded to the less energetic of the two agents: one
parameter models. The parameter β > 0 measures the strength of bias toward the less energetic of
the two interacting agents. For β 	 1 the equilibrium distribution Peq(ε) approaches an inverse
power law function. For larger values of β, Peq(ε) approaches a non-monotonic distribution with
an exponential tail. Computer realizations using N = 100 000 agents with energy εi (t = 0) = 1,
and Peq(ε) is evaluated after 20 000 000 random collisions.

where the parameter β � 0 measures the strength of the statistical bias toward the less energetic
of the two agents. So, if β = 0, Pβ(σ = 1) = Pβ(σ = −1) = 0.5, and the case reduces to the
multiplicative stochastic process studied in the previous subsection. Instead, if β > 0 the less
energetic of the two agents has a higher chance to absorb energy from the other agent because
0.5 < Pβ(σ = 1) < 1. This probability increases with the energy gap between the two agents,
εi 	 ε j , while for two agents with the same energy εi = ε j , there is no bias, and the bias
probability again is Pβ(σ = 1) = Pβ(σ = −1) = 0.5.

Figures 8 and 9 show a few computer simulations. For β 	 1 the equilibrium distribution
Peq(ε) approaches an inverse power law function. For larger values of β , Peq(ε) approaches a
non-monotonic distribution with an exponential tail that decays more quickly as β increases.
Figure 9 suggests that these equilibrium probability distributions are well fitted with Gamma
distributions. Also, for β → ∞, that corresponds to the case in which the less energetic of
the two agents always absorbs energy from the more energetic one, the equilibrium distribution
rapidly converges to a characteristic Gamma-like probability density function.

4.6. Energy exchange oriented and bounded to the less energetic of the two agents: two
parameter models

In the previous subsection we have adopted a model that depended only on one parameter
β > 0. Moreover, we chose a probability bias function Pβ(i, j) of the type of a Planck-
like function and assumed that the transfer energy amount could not exceed the amount of the
less energetic of the two agents. This is not a necessary condition for getting a Gamma-like
equilibrium density function. To prove this herein we adopt a different model that adopts a
similar philosophy but with a different probability bias function and with a different definition
of the amount of energy transfer. The amount of energy that can be transferred from one agent
to the other depends on an additional parameter α that is a measure of the fraction of the energy
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Figure 9. Models as in figure 8. The histograms are fitted with appropriate Gamma functions, �(ε),
of the type Peq(ε) = a(ε − b)c exp(−dε), with a, b, c and d appropriate fitting parameters. The
curve for ‘Beta = inf’ corresponds to the case β → ∞. The case β → ∞ corresponds to the case
in which the less energetic of the two agents always absorbs energy from the more energetic one.

of the less energetic of the two agents might be exchanged in each interaction. For generality we
assume that the less energetic of the two agents might occasionally absorb or lose an amount of
energy that might be even slightly larger than its actual energy, but this amount should always
be comparable with its own energy.

Thus, in a simple model [18, 19] the equations are

ε′
i = εi + �εi j (50)

ε′
j = ε j − �εi j, (51)

where �εi j might be positive or negative and, for example is distributed according to the
following probability density function:

Pα,β (�εi j) = 1√
2πσ 2

i j

exp

[
− (�εi j − �̂εi j)

2

2σ 2
i j

]
, (52)

where

σi j = α min(εi , ε j) (53)

�̂εi j = β
ε j − εi

ε j + εi
σi j (54)

with α > 0 and β > 0. Thus, if εi = ε j the two agents have the same probability to gain
or lose energy. However, if εi < ε j the agent i has a better chance to absorb energy from the
agent j . The parameter α measures the statistical width of the fraction of energy involved in
each transaction, and the parameter β measures the strength of the statistical bias favouring the
less energetic of the two traders.

Figures 10 and 11 show a few computer simulation examples. By keeping β constant and
increasing α the Gamma-like equilibrium probability distributions become wider. This is also
obtained by keeping α constant and decreasing β . This can be easily explained by observing
that with small α and large β it is more difficult for the low energetic agent to further lose
energy and for very energetic agents to further absorb energy.
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Figure 10. Energy exchange oriented and bounded to the less energetic of the two agents: two
parameter models. The parameter α > 0 measures the width of distribution of the transfer energy
amount relative to the lower energy amount between the two agents, while β > 0 measures the
strength of bias toward the less energetic of the two interacting agents. By keeping β constant
and increasing α the Gamma-like equilibrium probability distributions become wider. Computer
realizations using N = 100 000 agents with energy εi (t = 0) = 1, and Peq(ε) is evaluated after
20 000 000 random collisions.

Figure 11. Models as in figure 10. By keeping α constant and decreasing β the Gamma-like
equilibrium probability distributions become wider.

5. Conclusion

Herein we have studied several energy exchange models of multiple interacting agents that
conserve energy in each interaction, such as occurs in the elastic collision of particles. We have
simply changed the rules that regulate the amount and the direction of energy exchange, and
in some cases we have included some boundary effects that limit the amount of energy that a
single agent can have.
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We have shown that contrary to traditional wisdom the well-known exponential Maxwell–
Boltzmann–Gibbs distribution of energy for elastically colliding particles is not the only
possible outcome of elastic interactions. In fact, the exponential Maxwell–Boltzmann–Gibbs
distribution of energy depends crucially on the hypothesis that during a collision the energy of
the two agents mixes and then randomly splits between the two particles.

We have found that a different hypothesis regarding the amount and the direction of
energy exchange gives rise to a variety of complex stochastic behaviours that manifest energy
equilibrium probability distributions of different types. In addition to the familiar Maxwell–
Boltzmann–Gibbs distributions, we also found uniform distributions, truncated exponential
distributions, Gaussian distributions, Gamma distributions, inverse power law distributions,
mixed exponential and inverse power law distributions, and evolving distributions that do not
manifest a stable equilibrium. We expect that many if not all these statistical distributions are
to be found among complex chemical reactions.
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